UNE CORRECTION DU BAC BLANC 2017- SUJET SPECIALITE

Exercice 1

Partie A

- 1. D'après le graphique, C'(t) est donné par la « pente » de la tangente à la courbe C au point d'abscisse
- t. Il semblerait qu'à l'instant t = 0, le coefficient directeur des tangentes soit le plus grand. Ainsi, la vitesse d'apparition de l'alcool dans le sang semble maximale pour t = 0.
- 2. « Une personne de plus faible corpulence subit plus vite les effets de l'alcool ». Pour la courbe C_1 , la vitesse d'apparition de l'alcool dans le sang est plus importante à l'instant t = 0. En effet, graphiquement pour t = 0, le coefficient directeur de la tangente à C_1 est supérieur au coefficient directeur de la tangente à C_2 . On peut donc penser que la courbe C_1 correspond à celle de la personne la moins corpulente et donc, la courbe C_2 correspond à celle de la personne la plus corpulente.
- 3. (a) La fonction f est définie sur l'intervalle $[0; +\infty[$. Cette fonction est dérivable sur l'intervalle $[0; +\infty[$ comme produit et composée de fonctions dérivables sur cet intervalle.

On a :
$$f'(t) = Ae^{-t} - Ate^{-t}$$
. Soit : $f'(t) = Ae^{-t}(1-t)$. Ainsi, $f'(0) = A$.

(b) f'(0) = A est donc le coefficient directeur de la tangente à la courbe au point d'abscisse 0. Or, « Une personne de plus faible corpulence subit plus vite les effets de l'alcool ».

Donc, plus A est grand, plus la personne subit plus vite les effets de l'alcool, plus la personne est donc de faible corpulence.

L'affirmation est donc Fausse.

Partie B - un cas particulier

1. On veut étudier les variations de la fonction f définie sur $[0; +\infty[$ par : $f(t) = 2te^{-t}$. C'est la fonction considérée dans la partie A. 3. avec A = 2.

On a donc :
$$f'(t) = 2e^{-t}(1-t)$$
.

Le signe de f'(t) dépend de celui de 1-t puisque $2e^{-t}>0, \quad \forall t\geq 0.$

On a donc le tableau de variations suivant :

t	0		1		$+\infty$
f'(t)		+	0	_	
f	0	<i></i>	$\frac{2}{e}$		

$$f(0) = 0$$
 et $f(1) = \frac{2}{e}$.

- 2. D'après l'étude des variations, la concentration d'alcool dans le sang de Paul est maximale 1heure après l'absorption. Elle est environ égale à $0.74~\mathrm{g/l}$.
- 3. D'après le cours, $\lim_{t\to +\infty}(\frac{e^t}{t})=+\infty$. Ici, $f(t)=2\times\frac{t}{e^t}$. Ainsi, $\lim_{t\to +\infty}\left(\frac{e^t}{t}\right)^{-1}=0$,

D'où : $\lim_{t \to +\infty} f(t) = 0$.

Ce qui signifie qu'au fil du temps, la concentration d'alcool dans le sang diminue et redevient proche de 0.

4. (a)

- La fonction f est continue et strictement croissante sur l'intervalle [0; 1]. $0, 2 \in [0; \frac{2}{e}]$. D'après le corollaire du théorème des valeurs intermédiaires, il existe un seul réel $t_1 \in [0; 1]$ tel que $f(t_1) = 0, 2$.
- La fonction f est continue et strictement décroissante sur l'intervalle $[1 ; +\infty[.0,2 \in]0 ; \frac{2}{e}]$. D'après l'extension du corollaire du théorème des valeurs intermédiaires, il existe un seul réel $t_2 \in [1 ; +\infty[$ tel que $f(t_2) = 0, 2$.
- (b) On cherche la valeur de t_2 afin de répondre à la question.

En utilisant la méthode « du balayage », on obtient :

à l'unité....
$$f(3) \approx 0,298$$
 et $f(4) \approx 0,147$ D'où : $3 < t_2 < 4$.

au dixième...
$$f(3,5) \approx 0,211$$
 et $f(3,6) \approx 0,197$ D'où : $3,5 < t_2 < 3,6$.

au centième....
$$f(3,57) \approx 0,201$$
 et $f(3,58) \approx 0,199$ D'où : $3,57 < t_2 < 3,58$.

Ce qui correspond à environ plus de 3 heures et 34 minutes.

C'est à dire que Paul devra attendre 3 heures et 35 minutes pour pouvoir prendre le volant en toute légalité.

5. (a) La concentration minimale détectable est égale à $5\times 10^{-3} {\rm g/L}.$

On sait que : $\lim_{t\to +\infty} f(t) = 0$. Par définition, cela signifie que :

Pour tout intervalle ouvert I contenant 0, il existe un réel T tel que : pour tout t > T, $f(t) \in I$.

En particulier pour $I =]-\infty$; 5×10^{-3} [, il existe donc un réel T à partir duquel $f(t) < 5 \times 10^{-3}$.

(b)

	Initialisation	Etape 1	Etape 2
р	$0,\!25$	0,25	0,25
t	3,5	3,75	4
С	0,21	0,18	0,15

La valeur affichée à la fin de cet algorithmle est la valeur de T à la précision p déterminée précédemment, c'est à dire la valeur à partir de laquelle la concentration d'alcool n'est plus détectable.

Exercice 2

1. (a) A est le point d'affixe
$$a = -\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}$$
.

On a ainsi, d'après le cercle trigonométrique et les valeurs particulières connues :

$$a = \cos\left(\frac{3\pi}{4}\right) + i\sin\left(\frac{3\pi}{4}\right).$$
 Soit : $a = e^{\frac{3\pi}{4}i}$.

(b) Déterminons la forme algébrique de $f(a) = a + \frac{1}{a}$.

On a:
$$f(a) = e^{\frac{3\pi}{4}i} + \frac{1}{e^{\frac{3\pi}{4}i}} = e^{\frac{3\pi}{4}i} + e^{-\frac{3\pi}{4}i} = 2 \times \cos\left(\frac{3\pi}{4}\right) = -\sqrt{2}.$$

2. On veut résoudre l'équation : f(z) = 1.

$$f(z)=1$$
 équivaut à : $z+\frac{1}{z}=1$. Ce qui est équivalent à :
$$\begin{cases} z^2 & -z & +1 & = 0 \\ z & \neq 0 \end{cases}$$

On a une équation de degré 2 d'inconnue z à coefficients réels et il est clair que z=0 n'est pas une solution.

$$\Delta = -3 < 0.$$

Donc, ce trinôme possède deux racines complexes conjuguées : $z_1 = \frac{1 + i\sqrt{3}}{2}$ et $z_2 = \frac{1 - i\sqrt{3}}{2}$.

3. (a) Tout nombre complexe z admet une écriture exponentielle : $|z| \times e^{i\theta}$ où θ est un réel.

Or, z est l'affixe d'un point M appartenant au cercle C de centre O de rayon 1, d'où : |z|=1.

On a donc : $z = e^{i\theta}$ avec θ , un réel.

$$\text{(b) } f(z) = e^{i\theta} + \frac{1}{e^{i\theta}} = e^{i\theta} + e^{-i\theta}; \quad \text{Or, } e^{i\theta} + e^{-i\theta} = 2 \times \cos{(\theta)},$$

Soit : $f(z) = 2 \times \cos(\theta)$. Dans ce cas, f(z) est un nombre réel.

4. (a) Posons : z = x + iy, avec x et y réels et $(x; y) \neq (0; 0)$.

Exprimons alors sous forme algébrique f(z). $f(z) = x + iy + \frac{1}{x + iy}$ et $(x; y) \neq (0; 0)$.

On a donc :
$$f(z) = x + iy + \frac{x - iy}{x^2 + y^2}$$
, $(x ; y) \neq (0 ; 0)$. Soit encore : $f(z) = \frac{x(x^2 + y^2 + 1) + iy(x^2 + y^2 - 1)}{x^2 + y^2}$.

La forme algébrique de f(z) est donc donnée par l'expression :

$$\frac{x(x^2+y^2+1)}{x^2+y^2} + i\frac{y(x^2+y^2-1)}{x^2+y^2} \text{ et } (x ; y) \neq (0 ; 0).$$

(b) On cherche l'ensemble des points M(z) du plan pour lesquels f(z) est un nombre réel.

$$f(z) \in \mathbb{R} \text{ \'equivaut \`a } Im(f(z)) = 0 \text{ ; c'est \`a dire : } \left\{ \begin{array}{ccc} y(&x^2&+&y^2-1)&=0\\ &(x,&y)&\neq&(0\text{ ; }0) \end{array} \right.$$

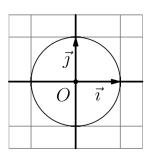
Soit:
$$y = 0$$
 ou $x^2 + y^2 - 1 = 0$ et $(x; y) \neq (0; 0)$.

y=0 représente l'ensemble des points situés sur l'axe des abscisses, on enlève l'origine O du repère, c'est à dire le point (0; 0)

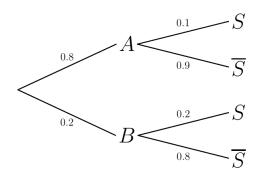
 $x^2 + y^2 - 1 = 0$ représente l'ensemble des points du cercle de centre O et de rayon 1.

L'ensemble des points M cherché est donc la réunion de l'axe des abscisses, l'origine O du repère exclu, et le cercle de centre O de rayon 1.

Représentation de l'ensemble des points M tel que f(z) soit un nombre réel.



Partie A 1. L'arbre pondéré qui résume la situation :



- 2. (a) Calcul de $p(B \cap \overline{S}) = p(B) \times p_B(\overline{S}) = 0, 2 \times 0, 8 = 0, 16.$
- (b) Les événements A et B forment une partition de l'univers, d'après la formule des probabilités totales, on a donc : $p(\overline{S}) = p(A \cap \overline{S}) + p(B \cap \overline{S})$

$$p(\overline{S}) = 0.8 \times 0.9 + 0.16$$
 $p(\overline{S}) = 0.88.$

La probabilité que la boîte prélevée ne contienne aucune trace de pesticides est égale à 0,88.

3. On cherche à calculer $p_S(B)$.

On a:
$$p_S(B) = \frac{p(B \cap S)}{p(S)} = \frac{p(B \cap S)}{1 - p(\overline{S})}$$
. Ainsi: $p_S(B) = \frac{0, 2 \times 0, 2}{1 - 0, 88} = \frac{1}{3}$.

Sachant que la boîte contient des traces de pesticides, il y a une chance sur 3 pour qu'elle provienne du fournisseur B.

Partie B

1. On considère l'expérience aléatoire : « acheter une boîte de thé chez le fournisseur et regarder si elle présente des traces de pesticides ».

Deux issues pour cette expérience,

le succès : « La boîte ne présente pas de traces de pesticides » On a p = 0,88.

l'échec : « La boîte présente des traces de pesticides ». On a q=0,12.

C'est donc une épreuve de Bernoulli.

On répète cette même expérience aléatoire 10 fois, de façon indépendante.

La variable aléatoire X qui compte le nombre de succès S suit la loi binomiale de paramètres n=10 et p=0,88.

2. On cherche:
$$p(X = 10)$$
. $p(X = 10) = \begin{pmatrix} 10 \\ 0 \end{pmatrix} 0,88^{10} \times 0,12^{0}$.

D'après la calculatrice, $p(X = 10) \approx 0,279$. (binomFdp(10,0.88,10) $\approx 0,279$)

La probabilité que les 10 boîtes prélevées ne présentent aucune trace de pesticides est environ égale à 0.28.

3. On cherche:
$$p(X \ge 8) = p(X = 8) + p(X = 9) + p(X = 10)$$
.

$$p(X \geq 8) = \left(\begin{array}{c} 10 \\ 0 \end{array}\right) 0,88^{10} \times 0,12^0 + \left(\begin{array}{c} 10 \\ 1 \end{array}\right) 0,88^9 \times 0,12^1 + \left(\begin{array}{c} 10 \\ 2 \end{array}\right) 0,88^8 \times 0,12^2$$

 $p(X \ge 8) \approx 0.891$.

ou bien : $p(X \ge 8) = 1 - p(X \le 7)$

D'après la calculatrice, $p(X \le 7) \approx 0,109$ (binomFRep(10,0.88,7) $\approx 0,109$)

D'où, $p(X \ge 8) \approx 1 - 0{,}109$. Soit : $p(X \ge 8) \approx 0{,}891$.

La probabilité qu'au moins 8 boîtes prélevées ne présentent aucune trace de pesticides est environ égale à 0,89.

Exercice 4

1. $u_0 = 5$ $u_1 = 5, 1$ On suppose que l'accroissement de la taille de la colonie d'un jour sur l'autre diminue de 10 % chaque jour.

On a ainsi : pour tout entier naturel n, $u_{n+2} - u_{n+1} = 0$, $9(u_{n+1} - u_n)$.

$$u_2 - u_1 = 0,9 (u_1 - u_0)$$
 c'est à dire : $u_2 - 5, 1 = 0, 9 (5, 1 - 5)$

 $u_2 = 5, 19.$

2. (a) On a :
$$V_n = \begin{pmatrix} u_{n+1} \\ u_n \end{pmatrix}$$
 et $A = \begin{pmatrix} 1, 9 & -0, 9 \\ 1 & 0 \end{pmatrix}$

pour tout entier naturel n, $u_{n+2} - u_{n+1} = 0$, $9(u_{n+1} - u_n)$

C'est à dire : $u_{n+2} = u_{n+1} + 0, 9u_{n+1} - 0, 9u_n$. Soit finalement : $u_{n+2} = 1, 9u_{n+1} - 0, 9u_n$.

$$AV_n = \begin{pmatrix} 1, 9 & -0, 9 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} u_{n+1} \\ u_n \end{pmatrix} = \begin{pmatrix} 1, 9u_{n+1} - 0, 9u_n \\ u_{n+1} \end{pmatrix} = \begin{pmatrix} u_{n+2} \\ u_{n+1} \end{pmatrix} = V_{n+1}.$$

(b) On pose
$$P = \begin{pmatrix} 0.9 & 1 \\ 1 & 1 \end{pmatrix}$$
. A l'aide de la calculatrice, on obtient : $P^{-1} = \begin{pmatrix} -10 & 10 \\ 10 & -9 \end{pmatrix}$

Calculons la matrice D telle que : $D = P^{-1}AP$

$$P^{-1}A = \begin{pmatrix} -10 & 10 \\ 10 & -9 \end{pmatrix} \begin{pmatrix} 1,9 & -0,9 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} -10 \times 1,9 + 10 \times 1 & -10 \times (-0,9) + 10 \times 0 \\ 10 \times 1,9 - 9 \times 1 & 10 \times (-0,9) - 9 \times 0 \end{pmatrix}$$

$$P^{-1}A = \left(\begin{array}{cc} -9 & 9\\ 10 & -9 \end{array}\right)$$

$$P^{-1}AP = \begin{pmatrix} -9 & 9 \\ 10 & -9 \end{pmatrix} \begin{pmatrix} 0,9 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} -9 \times 0, 9 + 9 \times 1 & -9 \times 1 + 9 \times 1 \\ 10 \times 0, 9 - 9 \times 1 & 10 \times 1 - 9 \times 1 \end{pmatrix} = \begin{pmatrix} 0,9 & 0 \\ 0 & 1 \end{pmatrix}$$

$$D = \left(\begin{array}{cc} 0, 9 & 0 \\ 0 & 1 \end{array}\right).$$

On observe que D est une matrice diagonale.

(c) On veut démontrer par récurrence que pour tout entier naturel $n, A^n = PD^nP^{-1}$.

* Pour
$$n = 0$$
, on a : $PD^0P^{-1} = P\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}P^{-1} = PP^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = A^0$.

L'égalité est vraie pour n = 0.

* On suppose que pour un k entier naturel fixé, on a : $A^k = PD^kP^{-1}$, démontrons alors que :

$$A^{k+1} = PD^{k+1}P^{-1}$$

$$A^{k+1} = A^k A = P D^k P^{-1} A.$$

Or, on a vu dans 2.b) que $D = P^{-1}AP$ soit encore : $PD = PP^{-1}AP$

et finalement : $PDP^{-1} = PP^{-1}APP^{-1}$

Ainsi, $A = PDP^{-1}$.

Ainsi,
$$A^{k+1} = PD^kP^{-1}A = PD^kP^{-1}PDP^{-1} = PD^{k+1}P^{-1}$$

Si
$$A^k = PD^kP^{-1}$$
, pour un k entier naturel fixé, alors $A^{k+1} = PD^{k+1}P^{-1}$.

Conclusion : On vient donc de démontrer par récurrence que pour tout entier naturel $n, A^n = PD^nP^{-1}$.

(d) Pour tout entier n, on a : $V_n = A^n V_0$

c'est à dire :
$$V_n = \begin{pmatrix} -10 \times 0, 9^{n+1} + 10 & 10 \times 0, 9^{n+1} - 9 \\ -10 \times 0, 9^n + 10 & 10 \times 0, 9^n - 9 \end{pmatrix} \begin{pmatrix} u_1 \\ u_0 \end{pmatrix}$$
.

On en déduit que : $u_n = (-10 \times 0, 9^n + 10) u_1 + (10 \times 0, 9^n - 9) u_0$

$$u_n = (-10 \times 0, 9^n + 10) \times 5, 1 + (10 \times 0, 9^n - 9) \times 5$$

$$u_n = 10 \times 0, 9^n(-5, 1+5) + 51 - 45$$

$$u_n = -0, 9^n + 6.$$

3. Pour calculer la taille de la colonie au bout du 10ème jour, on détermine u_{10} .

 $u_{10} \approx 5,651$. Au bout du 10ème jour, il y aura environ 5 651 fournmis dans la colonie.

4. On a, d'après 2. (d) $\forall n \in \mathbb{N}, u_n = -0, 9^n + 6$.

Or, $\lim_{n \to +\infty} (0, 9^n) = 0$. C'est la limite en l'infini d'une suite de type (q^n) avec 0 < q < 1.

Donc, $\lim_{n\to+\infty}(u_n)=6$. Le nombre de fourmis dans la colonie tendra vers 6 000.